Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon

نویسندگان

  • Yan Francescato
  • Vincenzo Giannini
  • Stefan A Maier
چکیده

We explore the existence of tightly confined gap modes in structures consisting of two infinitely long graphene ribbons vertically offset by a gap. By investigating carefully such a sandwich geometry we find that the gap modes originate from a strong hybridization that gives rise to improved waveguide performance while modifying the guiding behaviour compared to a single ribbon. Our work particularly focuses on the physical origin and description of these plasmon modes, studying the critical parameters of width, gap and operation wavelength. This allows different regimes, coupling mechanisms and mode families to be recognized. Importantly we show that the gap modes also exist when a single graphene sheet is placed on top of a metal or a doped semiconductor—a geometry that is readily achievable experimentally. As an example we report on an unprecedented level of confinement of a terahertz wave of nearly five orders of magnitude when a graphene ribbon is placed on top of a highly doped silicon substrate. Because of their remarkable field distributions and extreme confinement, the families of modes presented here could be the building blocks for both graphene-based integrated optics and ultrasensitive sensing modalities. 1 Author to whom any correspondence should be addressed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 15 (2013) 06302

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-dimensional gap plasmons for enhanced light-graphene interactions

Graphene plasmonics has become a highlighted research area due to the outstanding properties of deep-subwavelength plasmon excitation, long relaxation time, and electro-optical tunability. Although the giant conductivity of a graphene layer enables the low-dimensional confinement of light, the atomic scale of the layer thickness is severely mismatched with optical mode sizes, which impedes the ...

متن کامل

Confined plasmons in graphene microstructures: Experiments and theory

Graphene, a two-dimensional material with a high mobility and a tunable conductivity, is uniquely suited for plasmonics. The frequency dispersion of plasmons in bulk graphene has been studied both theoretically and experimentally, but no theoretical models have been reported and tested against experiments for confined plasmon modes in graphene microstructures. In this Rapid Communication, we pr...

متن کامل

Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.

Single-layer graphene has been shown to have intriguing prospects as a plasmonic material, as modes having plasmon wavelengths ~20 times smaller than free space (λp ~ λ0/20) have been observed in the 2-6 THz range, and active graphene plasmonic devices operating in that regime have been explored. However there is great interest in understanding the properties of graphene plasmons across the inf...

متن کامل

The reduction of surface plasmon losses in quasi-suspended graphene

Highly confined surface plasmons on graphene attract substantial interest as potential information carriers for highly integrated photonic data processing circuits. However, plasmon losses remain the main obstacle for implementation of such devices. In near-field microscopic experiments performed at the wavelength of 10 μm we show that a substantial reduction of plasmon damping can be achieved ...

متن کامل

Surface plasmon modes in graphene wedge and groove waveguides.

Surface plasmon modes at terahertz-infrared waveband in subwavelength graphene wedge and groove waveguides are investigated, which can be categorized into perfect electric conductor and perfect magnetic conductor symmetric modes with different propagation characteristics. The electromagnetic near-fields are localized strongly in different regions for these two kinds of modes. Moreover, these mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013